

SAMTM Data Sheet SAM-1920-4-40ps-x, λ = 1920 nm

Laser wavelength $\lambda = 1920 \text{ nm}$

High reflection band $\lambda = 1870 ... 1990 \text{ nm}$

Absorbance $A_0 = 4 \%$ Modulation depth $\Delta R = 2.6 \%$ Non-saturable loss $A_{ns} = 1.4 \%$

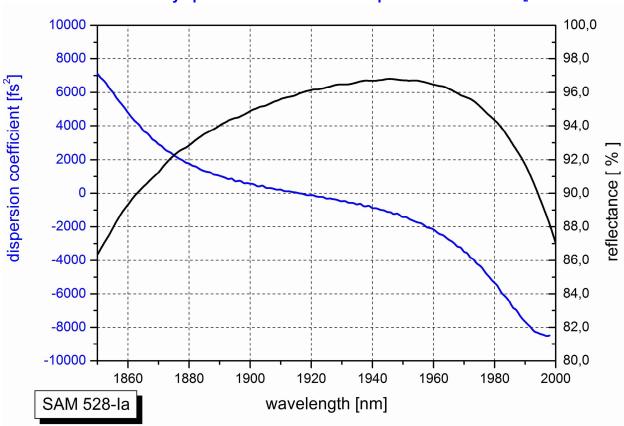
Saturation fluence $\Phi_{\text{sat}} = 35 \,\mu\text{J/cm}^2$

Relaxation time constant $\tau \sim 40 \text{ ps}$

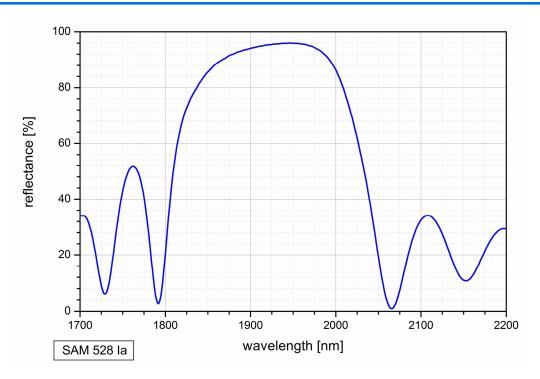
Damage threshold $\Phi = 3 \text{ mJ/cm}^2$

Chip area 4.0 mm x 4.0 mm; other dimensions on request

Chip thickness 450 µm

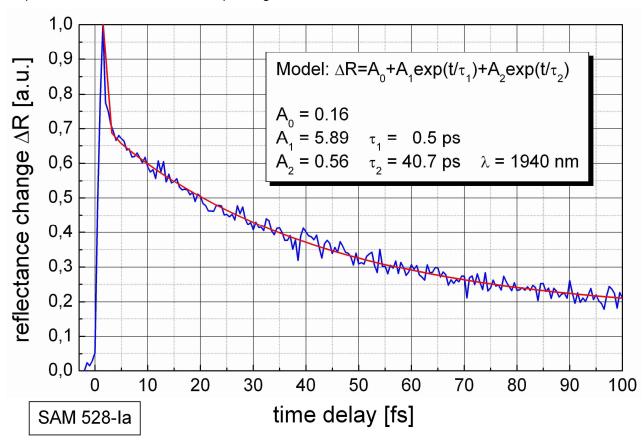

Protection the SAM is protected with a dielectric front layer

Mounting option **x** denotes the type of mounting as follows:


x = 0 unmounted

 $x = 12.7 \, \mathrm{g}$ glued on a gold plated Cu-cylinder with 12.7 mm \varnothing $x = 25.4 \, \mathrm{g}$ glued on a gold plated Cu-cylinder with 25.4 mm \varnothing $x = 12.7 \, \mathrm{s}$ soldered on a gold plated Cu-cylinder with 12.7 mm \varnothing $x = 25.4 \, \mathrm{s}$ soldered on a gold plated Cu-cylinder with 25.4 mm \varnothing x = FCmounted on a 1 m monomode fiber cable with FC connector

Low intensity spectral reflectance and dispersion coefficient D₂



Pump-probe measurement

The pump-probe measurement has been done by Dr. Uwe Griebner, Max-Born-Institut Berlin, Germany. The measured data can be fitted using a twofold exponential decay function with two amplitudes A_1 and A_2 and two corresponding time constants τ_1 and τ_2 .

